...read the wave

nanotechnologie,nanoteknologi,nanotecnologia,
nanotehnoloogia, nanoteknologia, nanotechnologija, nanotehnologijas, nanoteknologija, nanotechnologii, nanotecnologia, nanotehnologijo, nanoteknik
2006
Nano Elekronik
...Nano Electronics
...Nano Elektronica
www.nanotsunami.com

 

USF Researcher Works to Increase Computer Power, Speed

 


Newswise — Researchers from the University of South Florida, the University of Chicago and the Russian Academy of Sciences (Moscow) have recently developed the principles of operation and completed an experimental testing of a single molecule for use as a diode. A paper explaining their research has just been accepted for publication in Physical Review Letters by the American Physical Society.

“Single molecule diodes are the fundamental building blocks of an emerging technology called ‘nanoelectronics,' a field that holds promise for application in all kinds of electronic devices, from cell phones to sensors,” explained Ivan Oleynik, a physics professor at USF. “Molecular diodes could be built a thousand times smaller than those in use now.”

Computer industry execs might start breathing easier because their biggest fear - that smaller and faster devices will eventually come to an end because silicon microchips will get so small that eventually they will contain too few silicon atoms to work - might be lessened as advancements in molecular electronics come to the rescue.

“Molecular electronics is enabling an area of nanoscience and technology that holds promise for the next generation of electronic devices,” said Oleynik. “Single molecular electronic devices rely on organic molecules with electronic responses tailored through synthetic organic chemistry.”

Functioning at under several nanometers (a nanometer is a billionth of a meter), the molecular diode studied by the team of researchers acted as a rectifier (diode) because of the chemical asymmetry in different parts of an organic molecule comprised of both thiophene and thiazole. As a major component of electric circuitry, a diode is responsible for conducting electrical current by working something like a light switch, but allows current to flow only forward. The first diodes were large vacuum tubes, and most modern diodes are based on solid-state semiconductors.

“Molecular nanoelectronics is an exciting area of science not only because of its potential but because it is highly interdisciplinary, combining physics, chemistry, materials science, computational science and engineering,” said Oleynik.

The team's most recent finding and the basis for their publication was an explanation of how the intrinsic chemical asymmetry of “designer” molecules results in rectification of electrical current. The left and right parts of the organic molecule interact differently with electrons that “tunnel” through the molecule. Importantly, the electronic interactions with the left and right parts of the molecule respond differently to the change of the polarity of applied voltage.

The potentially bright future of molecular electronic technology is calculated on an ability to control molecular structure. Much of the work is yet empirical and involves “chemical intuition” as a driving force in molecular design as well as the applications of molecular devices.

“The next step is in developing the virtual integrated prototyping of molecular devices and optimizating their electronic functionalities by choosing the most appropriate chemical composition that has desirable electronic properties,” explained Olynik. “This will require the development of a scientific understanding of electron transport through molecules as well as the introduction of new concepts and new language to explain such transport.”

Success in pioneering the field of molecular electronics would mean new life could be breathed into Moore's Law, the prediction made by Intel's Gordon Moore in 1965 that the density of transistors on a chip would double very 18-24 months. While Moore's observation has been true, everyone in the industry knows that there has always been a limit to the number of atoms that would render a device smaller, cheaper, faster but still operable. New technology that would “expand” the limits of microelectronics has been a continuing quest.

“Molecular electronics is a viable alternative that may reach the ultimate limit of miniaturization – one molecule per transistor, diode or switch,” believes Oleynik.

The University of South Florida is on track to become one of the nation's top 50 public research universities. USF received more than $287 million in research contracts and grants last year, and it is ranked by the National Science Foundation as one of the nation's fastest growing universities in terms of federal research and development expenditures. The university has a $1.1 billion annual budget and serves nearly 43,250 students on campuses in Tampa, St. Petersburg, Sarasota/Manatee and Lakeland. In 2005, USF entered the Big East athletic conference.



www.nano-tsunami.com
This story has been adapted from a news release -
Diese Meldung basiert auf einer Pressemitteilung -
Deze tekst is gebaseerd op een nieuwsbericht -





who is reading
the wave ?

missed some news ?
click on archive photo

 

or how about joining us

 

or contacting us ?

 


about us

 

our mission