...read the wave

MEMS..in depth - MEMS... im detail


New manufacturing process helps metals lose weight 

A pioneering manufacturing process that can turn titanium, stainless steel and many other metals into a new breed of engineering components could have a big impact across industry.

Unlike conventional solid-metal components, the new parts have a tiny lattice-like structure, similar to scaffolding but with poles twice the diameter of a human hair, making them ultra-light. Because loads are channelled along the poles, the parts can comprise up to 70% air while remaining strong enough to perform correctly.

The components could replace solid metal in integrated circuits, automotive applications and many other fields of engineering. Aircraft parts, for example, could be produced that are over 50% lighter than conventional alternatives. The reduction in aircraft weight would cut fuel requirements, bringing down the cost of air travel and reducing the emissions produced by the combustion of aviation fuels that are a major contributor to climate change.

The world's first commercial-scale system for the rapid manufacture of these new-generation metal components is now being developed by engineers at the University of Liverpool, in collaboration with MCP (Mining and Chemical Products) Ltd and funded by the Engineering and Physical Sciences Research Council (EPSRC). 

Harnessing a technique known as selective laser melting (SLM), this fully automated system builds up components, layer by layer, from fine metal powders using an infra-red laser beam to melt the powders into the required structure. Layers can be as thin as 25 microns, making it possible to produce complex parts in which thermal, impact-absorption and many other properties can be distributed in specific places to meet the requirements of particular applications. This is not possible with conventionally manufactured ‘solid' metals.

For instance, the system can manufacture components designed for use wherever heat is generated and needs to be removed quickly. Such parts might include the heat sinks that cool the processor chips in personal computers. The lattice in these heat sinks can be designed to facilitate heat flow and deliver increased cooling rates, resulting in improved chip reliability and fewer PC crashes.

Although other ways of making some types of latticed metals exist, they do not enable the features of the lattice to be precisely ‘designed in' to meet customised requirements. The metals they produce are also limited in their usefulness because they have to be machined into the final required shape, rather than ‘built for purpose' step by step. A typical example is the manufacture of composite components used in motor sport.

The new system's versatility means it could manufacture better-performing components of this type, as well as products for the healthcare and chemicals sectors. For instance, it is possible to imagine miniaturised chemical reactors being built using SLM and replacing large chemical plants at some point in the future, with substantial benefits in terms of production, flexibility and safety.

The project is building on previous EPSRC-funded work carried out over the last six years by the University of Liverpool team, which is led by Dr Chris Sutcliffe. Dr Sutcliffe says: “There is worldwide interest in developing a standard rapid manufacturing process based on SLM. Our system will produce optimised engineering components that can't be made in any other way and will give the industry that has supported us a significant advantage in future markets.”

The new manufacturing system, which represents a highly innovative approach to the production of metal components, is due to be in full commercial use next year. The team is already working on a larger version which should be ready for commissioning in around 18 months.     


The three-year project ‘Rapid Manufacture of Industrially Relevant Hierarchical Structures' is receiving total EPSRC funding of nearly £450,000, plus £200,000 from industrial partners Osprey Metals Ltd, Stryker Orthopaedics and MCP (Mining & Chemical Products) Ltd.

The University of Liverpool has been undertaking innovative, world-leading research in the development and production of micro-latticed metals since 1999. It was the first university in the UK to install SLM technology.

An integrated circuit is a complex, miniaturised electronic circuit etched onto a tiny silicon semiconductor (or ‘chip'). Integrated circuits play a key role in electronic equipment such as computers and calculators.

A laser ( L ight A mplification by S timulated E mission of R adiation) is a device that harnesses atoms to emit coherent beams of light.

Currently, composite components used in motor sport are usually machined from a block of metal foam, covered with a carbon fibre cloth impregnated with resin and cured in an oven.  With the new process, the metal foam material would be ‘grown' on the SLM machine to the exact form of the required component, cutting out the costly machining step. The new process also offers many design options by which the components could be given the ability to ‘transform', changing their dimensions to suit the particular conditions which prevail at the time.

A micron is a millionth of a metre.

The Engineering and Physical Sciences Research Council (EPSRC) is the UK's main agency for funding research in engineering and the physical sciences. The EPSRC invests more than £500 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone's health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK. Website address for more information on EPSRC: www.epsrc.ac.uk/

For more information, contact:

Dr Chris Sutcliffe, Department of Engineering, University of Liverpool, Tel: 0151 794 4316, Mobile: 0151 794 7729, E-mail: c.j.sutcliffe@liv.ac.uk

Natasha Richardson, EPSRC Press Office, Tel: 01793 444404, E-mail: natasha.richardson@epsrc.ac.uk

This story has been adapted from a news release -
Diese Meldung basiert auf einer Pressemitteilung -
Deze tekst is gebaseerd op een nieuwsbericht -




who is reading
the wave ?

missed some news ?
click on archive photo


or how about joining us


or contacting us ?


about us


our mission